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Abstract— Federated learning (FL) has emerged as a 

potential method for training machine learning models on 

distributed data sources while maintaining data privacy. The 

distributed nature of FL, on the other hand, creates unique 

cybersecurity challenges that must be addressed to protect the 

integrity, confidentiality, and availability of the contributing data 

and models. This review paper intends to give a thorough 

examination of the cyber security problems related to federated 

learning and to investigate various mitigating measures proposed 

in the literature. The study discusses the possible impact of 

important vulnerabilities in FL systems, such as adversarial 

attacks, data poisoning, model inversion, and inference attacks, 

on privacy and system performance. The study also explores 

existing solutions and countermeasures proposed to solve these 

security concerns, such as cryptographic approaches, secure 

aggregation protocols, differential privacy mechanisms, and 

model verification methods. This review paper seeks to provide 

insights for researchers, practitioners, and policymakers on the 

topic of cyber security in federated learning by synthesising the 

present state of research and identifying gaps. 
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I.  INTRODUCTION  

Federated learning (FL) has emerged as a transformative 
paradigm for training machine learning models on distributed 
data sources while preserving user privacy. In contrast to 
traditional centralised machine learning approaches [1], FL 
allows data to remain on local devices or servers, with only 
model updates shared among participating entities. FL's 
distributed nature provides numerous benefits, including data 
privacy preservation, lower communication costs, and 
increased scalability. However, the use of FL raises new 
cybersecurity concerns that must be addressed to ensure the 
integrity, confidentiality, and availability of the participating 
data and models. The goal of this review paper is to provide a 
thorough examination of the cyber security concerns associated 

with federated learning as well as investigate various 
mitigation strategies proposed in the literature. 

The first section of this paper provides an overview of 
federated learning by explaining its principles and emphasising 
its benefits and drawbacks. The following section focuses on 
cybersecurity issues that are unique to federated learning. The 
following section provides an overview of various mitigation 
strategies proposed in the literature to address these 
cybersecurity challenges. This paper also examines the existing 
frameworks and solutions proposed in the literature, providing 
a comprehensive overview of cutting-edge approaches to 
addressing cybersecurity concerns in federated learning. These 
solutions are analysed and compared based on their 
effectiveness, efficiency, scalability, and compatibility with 
various FL settings. Overall, the purpose of this review paper 
presents the current state of research and identify research gaps 
related to cyber security in federated learning. 

II. BASICS OF FEDERATED LEARNING 

Federated Learning (FL) allows models to be trained using 
decentralised data sources while maintaining data privacy. 
Unlike traditional centralised approaches, FL enables 
participating entities to train a global model collaboratively 
while keeping their data local, addressing concerns about data 
sharing and data privacy. FL entails a network of devices or 
servers that work together to train a shared model [2]. FL 
participants, which can be devices or servers, keep their data 
and contribute to the training process without sharing raw data 
with a central authority or other participants. This decentralised 
approach enables entities to leverage their local data while 
maintaining control over sensitive information, which is 
especially important in scenarios where data privacy is 
critical. Federated learning principles are based on the concepts 
of decentralisation, local model updates, privacy preservation, 
and collaboration [3]. Decentralisation emphasises the retention 
of data on individual devices or servers, and the training 
process is carried out through local computation and 
communication. Participants train their models locally using 

https://jcsdf.nfsu.ac.in/


    

NFSU – Journal of Cyber Security and Digital Forensics 

Volume – 2, Issue – 1, June 2023 

E-ISSN - 2583-7559 

 

 

 

Page 30 

https://jcsdf.nfsu.ac.in/  

their respective local data, which is then aggregated to create a 
global model that incorporates knowledge from all participants. 
Privacy preservation is a key principle in FL, which is 
accomplished through techniques such as encryption, secure 
aggregation protocols [4][5], and differential privacy, which 
safeguard the confidentiality of participants' data during the 
training process. In FL, participants voluntarily contribute their 
computational resources and local expertise to collectively 
improve the performance of the global model. Federated 
learning has a wide range of applications, including healthcare, 
finance, the Internet of Things (IoT) [6], and edge computing 
[7]. Its principles address data silos, regulatory constraints, and 
privacy concerns, allowing the benefits of distributed machine 
learning to be realised in sensitive and privacy-sensitive 
environments. Federated learning (FL) has distinct advantages 
over traditional centralised machine learning approaches, but it 
also introduces new challenges. FL has several advantages that 
contribute to its appeal and suitability in a variety of situations: 

• Data Privacy Preservation: FL addresses privacy 
concerns and reduces the risk of privacy breaches 
associated with sharing sensitive data by keeping data 
local and decentralised. 

• Reduced Communication Costs: Because only model 
updates or gradients are shared among participants, FL 
reduces the need for large-scale data transmission, 
resulting in lower communication costs. 

• FL's decentralised architecture enables it to handle 
massive datasets distributed across multiple devices or 
servers, making it suitable for applications involving a 
large number of participants or data sources. 

• Collaborative Knowledge Sharing: FL encourages 
participants to contribute their local expertise and 
computational resources, allowing the network's 
collective intelligence to improve the performance of 
the global model. 

While FL has compelling benefits, it also has challenges 
that must be addressed for successful implementation [8]: 

• Communication bottlenecks: In scenarios with a large 
number of participants or limited communication 
bandwidth, coordinating the exchange of model updates 
or gradients among participants can become a 
bottleneck, reducing training efficiency. 

• Heterogeneous Data Sources: FL operates in 
environments where participants' data distributions and 
characteristics differ. Handling heterogeneous data 
sources makes it difficult to achieve model fairness and 
generalisation performance across all participants. 

• Maintaining Model Consistency: Maintaining model 
consistency across participants is a critical challenge in 
FL, given differences in computational capacities, 
network conditions, and data quality. 

• Risks to Data Security and Privacy: While FL 
prioritises data privacy, it also introduces security and 
privacy risks. Adversarial attacks, such as poisoning or 
model inversion, can compromise participant privacy or 
disrupt the learning process. 

Understanding FL's benefits and drawbacks is critical for 
researchers, practitioners, and policymakers to make informed 
decisions about its use and develop effective solutions.  

III. CYBER SECURITY CONCERNS IN FEDERATED LEARNING 

Federated learning (FL) poses unique cybersecurity 
challenges due to its collaborative nature. In this section, 
specific cyber security concerns associated with FL and their 
effect on privacy and system performance are discussed. 

A. Adversarial Attacks 

Adversarial attacks pose a significant threat to FL systems, 
jeopardising participant data privacy and integrity as well as 
the overall model. Poisoning attacks may be attempted by 
injecting malicious data samples during the training process, 
resulting in biased models or incorrect predictions. Model 
inversion attacks seek to extract sensitive information from the 
trained global model, potentially infringing on participants' 
privacy. Adversarial attacks can also compromise the model 
aggregation process or target the communication infrastructure, 
resulting in manipulated or compromised global models. 

B. Breach of Data Privacy 

While FL prioritises data privacy, there are potential flaws 
that could result in data breaches. Malicious entities can infer 
or reconstruct participants' local data even if it is not directly 
shared. To infer sensitive training data, inference attacks use 
information leakage from model updates or gradients. 
Participants' privacy being violated can have serious 
consequences, especially in sensitive domains such as 
healthcare or finance. 

C. Risks to Communication and Privacy [9] 

To exchange model updates or gradients, FL relies on 
frequent communication among participants. This 
communication, however, poses privacy and security risks. 
Communication channel eavesdropping or interception can 
expose sensitive information, jeopardising both participant 
privacy and the confidentiality of model updates. 
Communication channel bandwidth or latency can also cause 
delayed or incomplete updates, affecting the overall training 
process and model performance. 

D. Backdoor attacks and model [10] 

When malicious participants inject biased or manipulated 
data into the training process, the global model is influenced to 
produce the desired results. Backdoor attacks attempt to 
incorporate hidden patterns or triggers into the model, allowing 
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attackers to control or manipulate the model's behaviour in 
specific scenarios. These attacks can have a negative impact on 
the fairness, robustness, and generalisation performance of FL 
models. 

E. Insider Threats and Data Exfiltration  

Insider threats involve participants with authorised access 
to the FL system who may abuse their privileges or 
intentionally or unintentionally leak sensitive data. Participants 
may jeopardise the confidentiality of their local data by sharing 
it with unauthorised parties or exploiting the trained global 
model for personal gain. Mitigating insider threats and 
preventing unintentional data leakage is critical for FL system 
security and privacy. 

Understanding FL cyber security concerns is critical for 
developing effective countermeasures and mitigating their 
potential impact. The following section investigates various 
strategies proposed in the literature to address these concerns 
and improve FL system security. 

IV. MITIGATION STRATEGIES 

Various mitigation strategies have been proposed in the 
literature to address cyber security concerns in federated 
learning (FL). This section discusses key approaches and 
techniques aimed at improving the security and privacy of FL 
systems. 

A. Cryptographic Methods [ 11] 

In FL, cryptographic techniques are critical for protecting 
participant data and ensuring secure communication. 
Homomorphic encryption enables secure model aggregation 
and computation on encrypted data without revealing the raw 
information. Secure multiparty computation (MPC) protocols 
allow participants to collaborate on computations without 
exposing their inputs, enhancing privacy and preventing 
information leakage. Differential privacy mechanisms can be 
used to introduce noise or perturbation into participants' data or 
model updates, protecting individual privacy while allowing 
accurate global model training. 

B. Protocols for Secure Aggregation 

Secure aggregation protocols enable participants to 
aggregate their model updates while maintaining their privacy. 
During the aggregation process, these protocols ensure that no 
participant can deduce the individual contributions of others. In 
FL, techniques such as secure sum, secure averaging, and 
secure weighted aggregation enable the development of robust 
and privacy-preserving aggregation schemes. 

C. Model Validation and Robustness 

It is critical to ensure the integrity and robustness of FL 
models to mitigate adversarial attacks and maintain reliable 
performance. Model verification techniques involve evaluating 

the correctness and trustworthiness of model updates submitted 
by participants before incorporating them into the global 
model. Robust optimisation methods can be used to improve 
the resilience of FL models against poisoning attacks and to 
mitigate the impact of adversarial data. Adversarial training 
and defence mechanisms, such as differential privacy-based 
defences or robust aggregation algorithms, can improve the FL 
model's robustness to various attacks. 

D. Authentication and Access Control for Participants 

Robust participant authentication mechanisms should be 
implemented in FL systems to mitigate insider threats and 
unauthorised access. Unauthorised participants can be 
prevented from joining or manipulating the training process by 
using multi-factor authentication, secure login protocols, and 
access control mechanisms. Furthermore, secure and 
accountable participant identification techniques can track and 
attribute activities to specific participants, improving 
accountability and discouraging malicious behaviour. 

E. System Monitoring and Detection of Anomalies 

In FL systems, continuous monitoring and anomaly 
detection mechanisms can assist in identifying suspicious 
activities, unusual behaviours, or deviations from expected 
patterns. Real-time monitoring of model updates, 
communication channels, and participant activities can help 
detect potential security breaches or attacks in real-time. To 
quickly identify and respond to security incidents, anomaly 
detection algorithms, statistical analysis, and machine learning-
based techniques can be used. 

F. Data Preprocessing to Protect Privacy 

Data pre-processing techniques that protect privacy aim to 
reduce the privacy risks associated with data sharing in FL. 
Secure data obfuscation, data perturbation, and privacy-
preserving data synthesis are examples of privacy-enhancing 
technologies that can be used to anonymize or de-identify 
sensitive data while retaining their utility for model training. 
These techniques help to protect participant privacy in FL by 
limiting the exposure of sensitive information. 

These mitigation strategies are not mutually exclusive, and 
a combination of approaches may be required to address FL's 
cyber security concerns comprehensively. Furthermore, the 
efficacy and applicability of these strategies may differ 
depending on the specific FL setting, nature of the data, and 
threat landscape. FL practitioners can improve the security, 
privacy, and trustworthiness of FL systems and promote the 
use of this distributed learning paradigm in sensitive domains 
by implementing and refining these mitigation strategies. 

V. EXISTING FRAMEWORKS 

Federated learning (FL) has received a lot of attention in 
both research and industry, which has resulted in the 
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development of various frameworks and solutions to help with 
the implementation and deployment of FL systems. Google's 
TensorFlow Federated (TFF) framework [12] is one of the 
most widely used. TFF is a free and open-source framework 
that includes a programming interface as well as tools for 
creating and simulating FL systems. It integrates seamlessly 
with TensorFlow, allowing users to define FL computations 
while also leveraging the TensorFlow ecosystem. TFF supports 
federated learning for image classification, natural language 
processing, and recommendation systems, among other FL 
scenarios. Another popular solution is PySyft, a Python library 
built on top of PyTorch [13]. It allows for privacy-preserving 
machine learning, such as federated learning. PySyft is a 
higher-level FL API that enables users to define secure multi-
party computations, encrypted training, and differential privacy 
mechanisms. It is intended to work with other deep learning 
frameworks and supports a wide range of FL architectures and 
protocols.PySyft Keras is a PySyft [14] extension designed 
specifically for federated learning by those working with the 
Keras deep learning library. It has a Keras-like interface for 
defining FL models and integrates seamlessly with PySyft's 
privacy-preserving mechanisms. PySyft Keras streamlines FL 
model implementation by allowing users to leverage existing 
Keras models and pre-trained weights. Flower, an open-source 
Python library developed at Imperial College London by Adap, 
provides a framework for developing FL systems. It supports a 
wide range of architectures and protocols as well as a flexible 
and extensible API for defining federated learning tasks. 
Flower includes features such as automatic model compression, 
secure aggregation, and dynamic participant selection. Its goal 
is to make FL more accessible and scalable for use in both 
research and production settings. Webank, a leading Chinese 
digital bank, initiated the Federated AI Technology Enabler 
(FATE) open-source project. FATE provides a comprehensive 
and adaptable platform for developing secure and private FL 
systems. Federated XGBoost, Federated GBDT, and Federated 
Deep Learning are among the FL algorithms available. FATE 
also supports a variety of privacy safeguards, such as secure 
multi-party computation (MPC) and differential privacy. 
OpenMined is a volunteer-led organisation that focuses on 
privacy-preserving technologies such as federated learning. It 
provides a library, tool, and educational resource ecosystem to 
enable secure and privacy-focused machine learning. PySyft is 
one of OpenMined's core projects, and it emphasises principles 
like transparency, accountability, and decentralisation in FL. 
These existing frameworks and solutions provide powerful 
tools and resources for developers, researchers, and 
practitioners to implement and evaluate FL systems. Each 
framework has its own set of advantages and focuses on 
different aspects of FL, such as integration with deep learning 
frameworks, privacy protection techniques, or scalability. 
Specific requirements use cases, and the development team's 
expertise all influence the framework chosen.  

VI. RECENT LITERATURE 

A. ShieldFL [15] 

This paper introduces ShieldFL, a privacy-preserving 

model poisoning defence strategy for Privacy-Preserving 

Federated Learning (PPFL). The strategy uses two-trapdoor 

homomorphic encryption, secure cosine similarity, and 

Byzantine-tolerance aggregation. ShieldFL outperforms 

existing defence strategies on MNIST, KDDCup99, and 

Amazon benchmark datasets. It improves model poisoning 

defence by 30%–80% in IID and non-IID settings. The 

findings show that ShieldFL improves PPFL system security 

and robustness.  

B. Cyber-resilient hybrid approach using CNN [16] 

Federated Learning and Convolutional Neural Networks 

(CNN) are used in this study to forecast short-term wind 

power generation in Iran. The method emphasises accuracy, 

generalizability, data independence, and security. CNN 

extracts region-specific features for nine federated network 

clients. A generalised global supermodel can forecast wind 

power in new regions without training data using these 

features. The approach is tested in various scenarios, including 

accurate wind power forecasting in Mahshahr, Bojnord, and 

Lootak with 84%, 85%, and 74% accuracy, respectively. 

Forecasting models are also tested for data integrity attacks 

like scaling attacks. Image-processing-based cyber-attack 

detection is also used. The results show that the proposed wind 

power forecasting approach works across Iran and is cyber-

resilient. 

C. Framework for Evaluating and Mitigating Privacy 

Leakage Attacks [17] 

This paper addresses Federated Learning (FL) client 

privacy leakage. FL privacy leakage attacks are evaluated and 

compared in the study. Formal analysis and experiments show 

how adversaries can reconstruct private local training data by 

analysing shared parameter updates. Hyperparameter 

configurations and attack algorithms affect attack 

effectiveness and cost. It tests attacks in communication-

efficient FL protocols with different gradient compression 

ratios. The experiments suggest preliminary mitigation 

strategies and stress the need for a systematic evaluation 

framework to understand and mitigate FL client privacy 

leakage threats. 

D. mGAN-AI [18] 

This paper introduces mGAN-AI to analyse and mitigate 

privacy leakage in federated learning. A multi-task GAN with 

an auxiliary identification mechanism classifies input samples 

by category, reality, and client. Client identity discrimination 

lets the generator recover user-specific private data. The 

server-side mGAN-AI framework "invisibly" supports 

federated learning, unlike other methods. The paper discusses 
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anonymization and introduces a linkability attack to re-

identify anonymized updates by associating client 

representatives. Experimental results show that the proposed 

methods outperform current methods.  

E. ZeKoC [19] 

In resource-constrained scenarios, ZeKoC mitigates 

adversarial attacks in federated learning. The proposed method 

addresses deep neural network vulnerabilities and distributed 

federated learning challenges. ZeKoC treats adversarial 

mitigation as an unsupervised weight clustering problem, 

letting the server split and merge weight clusters for weight 

selection and aggregation. ZeKoC outperforms state-of-the-art 

schemes in mitigating general attacks, especially in non-i.i.d. 

data settings. This work improves the security and robustness 

of IoT/CPS-driven smart-world federated learning systems. 

F. VCPS data privacy architecture  [20] 

This article describes a secure and intelligent Vehicular 

Cyber-Physical Systems (VCPS) data privacy architecture. 

Dynamic content caching, resource allocation, and data 

sharing improve service quality and user experience. A 

privacy-preserving federated learning mechanism with 

intelligent data transformation and collaborative leakage 

detection reduces data leakage. Experimental results 

demonstrate the scheme's accuracy, efficiency, and security in 

VCPS data privacy. This research improves VCPS security, 

passenger safety, privacy, and property loss. The proposed 

architecture and federated learning approach improve data 

privacy in VCPS, encouraging future deployments of secure 

and intelligent solutions.  

G. TiFL  [21] 

TiFL introduces a tier-based architecture to address 

resource and data heterogeneity in Federated Learning (FL) 

systems. TiFL mitigates the impact on training time and model 

accuracy by selecting clients from the same tier during 

training rounds. Additionally, TiFL incorporates an adaptive 

tier selection approach to handle non-IID data and resource 

heterogeneity. Experimental evaluation demonstrates superior 

performance compared to conventional FL methods. TiFL 

shows promise for enhancing FL in real-world scenarios, 

enabling more effective and efficient collaborative learning in 

heterogeneous environments.  

VII. OPEN CHALLENGES AND FUTURE DIRECTIONS 

Despite advances and promising results in federated 
learning (FL), several open challenges remain, and there are a 
variety of future research and development directions. 
Addressing these issues will improve FL systems' security, 
privacy, efficiency, and scalability. The following are some of 
the most important open challenges and future directions: 

A. Techniques for Preserving Privacy 

Developing more robust and efficient privacy-preserving 
techniques is an important area for future research. Enhancing 
the effectiveness of differential privacy mechanisms, 
experimenting with advanced cryptographic methods, and 
investigating novel approaches such as homomorphic 
encryption and secure multiparty computation can all help to 
strengthen FL's privacy guarantees. 

B. Adversarial Robustness 

Adversarial attacks can be devastating to FL systems. 
Developing strong defences against poisoning attacks, model 
inversion attacks, and backdoor attacks is critical. Exploring 
techniques such as adversarial training, robust aggregation 
algorithms, and secure model verification can improve FL 
models' resilience and robustness to various attacks. 

C. Communication Overhead Reduction 

Reducing communication overhead in Florida is an ongoing 
challenge. It is critical to develop efficient communication 
protocols and compression techniques for transmitting model 
updates while maintaining privacy. Exploring the use of edge 
computing, federated learning over heterogeneous networks, 
and adaptive communication strategies can aid in reducing 
communication bottlenecks and improving FL efficiency 
overall. 

D. Heterogeneity and Scalability 

FL systems must be scalable in order to accommodate a 
large number of participants and diverse data sources. 
Developing techniques for dealing with heterogeneous data 
distributions, varying computational capabilities, and resource-
constrained devices is critical. Investigating distributed 
learning algorithms, adaptive participant selection methods, 
and efficient aggregation schemes can help FL overcome 
scalability and heterogeneity issues. 

E. Considerations for Regulatory and Legal Frameworks 

FL systems operate within a variety of regulatory and legal 
frameworks. It is critical to address the issues of data 
ownership, data governance, and compliance with privacy 
regulations. FL adoption can be facilitated by researching and 
developing mechanisms to ensure accountability, transparency, 
and compliance in healthcare, finance, and government 
domains. 

F. Standardisation and Benchmarking 

In order to compare and benchmark different FL 
approaches, standard evaluation metrics, datasets, and 
benchmarks must be established. Creating representative 
benchmark datasets and developing standardised evaluation 
protocols will improve the reproducibility and comparability of 
research results in Florida. 
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G. Real-World Deployments 

Practical challenges such as network heterogeneity, 
unreliable or intermittent connections, and limited 
computational resources must be addressed to expand FL 
deployment in real-world settings. Investigating deployment 
strategies, adaptive learning algorithms, and fault tolerance 
mechanisms can help FL be implemented effectively in a 
variety of environments. 

Collaboration between researchers, practitioners, 
policymakers, and domain experts from various disciplines is 
essential for effectively addressing Florida's complex 
challenges. Interdisciplinary collaboration and knowledge 
sharing can lead to innovative solutions, informed policy 
frameworks, and practical FL deployments in a variety of 
domains. Addressing these open challenges and exploring the 
above-mentioned future directions will pave the way for FL's 
widespread adoption and application. Continued research, 
collaboration, and innovation in these areas will help to 
advance the state-of-the-art in FL and realise its potential for 
secure and privacy-preserving distributed machine learning.  
Conclusion 

Federated Learning (FL) presents unique cybersecurity 

challenges, such as adversarial attacks, data privacy breaches, 

and communication risks. Researchers have proposed strategies 

including cryptographic methods, secure aggregation protocols, 

model validation, authentication, system monitoring, and data 

pre-processing. Further exploration is needed in privacy-

preserving techniques, adversarial robustness, scalability, 

heterogeneity, standardization, and real-world deployments. 

Sustained research and interdisciplinary collaboration are 

crucial. FL holds promise in addressing privacy and scalability 

issues in machine learning, but cybersecurity concerns must be 

addressed. Embracing future directions and advancing privacy-

preserving techniques can revolutionize collaborative and 

privacy-preserving machine learning. The secure adoption of 

FL relies on privacy measures and standardized evaluation 

metrics. 
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